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Thin films of Cd were prepared by vacuum deposition onto glass plates at temperature of
45°C and g}ressure of about 10-6 torr. Several good quality films of various thicknesses (15,000
~ 28,000 A) were made. The films were characterized by strong preferred orientation along the
002 planes parallel to the surface of the substrate, which were found to be thickness dependent.
In particular, the 002, 100 and 004 peaks were many times stronger than their corresponding
diffraction peaks obtained from powder specimens. Both the real and imaginary parts of the
Fourier coefficients were considered for line broadening analysis. The particle size (which is also
called the average size of the coherently diffracting domains in a direction perpendicular to the
diffracting planes), microstrain (which is usually called the mean strain in a given direction) and
faulting were determined. A systematic study for all the diffraction peaks indicates an increase
of average particle size J) from 546 to 620 A in the above thickness range with no apparent
anisotropy for the 100, 002 and 004 directions. The microstrain, however, decreased as much as
509, in this thickness range and showed a considerable amount of anisotropy. The fault param-
eters a (deformation fault probability) and # (growth fault probability) decreased rather rapidly

for all directions.

1. Introduction

This is the third paper in our series of publications
on the x-ray diffraction study (XDS) of hexagonal
close packed (hep) metals. In our earlier papers
[1, 2] (hereafter will be referred to as paper I and
paper II), we have studied the x-ray line broaden-
ing phenomena in deformed hep polycrystalline
Cd, Mg and Zn powders. In the present paper we
report a complementary study in evaporated thin
films of Cd. The microstructure of powder samples
of metals and alloys has been extensively studied
[3—5], by x-ray diffraction method over the period
of last two decades and many important advance-
ments have been made in the theory and application
by such studies. However, only a few corresponding
studies [6—15] have been reported in the thin films
of metals and alloys. The main reasons are that
(i) the microcrystallites in thin films are not
randomly deposited such as found in powders,
(ii) films should be very uniform, sufficiently thick
and good quality for XDS measurement, and
(iii) the corrections due to geometrical effect and
preferred orientation are not easy to perform
experimentally. On the other hand, the phenomena
of thin films have become a very important field of
research, because of their many interesting features
and variety of applications. The purpose of this
investigation is to understand the structural defects
and properties in thin films of hep metals. Although
Cd has rather high vapor pressure, this metal was
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selected because we have already studied its
structural properties in the powder form, but no
such study exists in the thin films of this metal
except some preliminary studies by us [13].

2. Experimental

2.1. Preparation of Thin Films

Thin films of Cd were prepared with various
thicknesses by evaporation onto microscopic glass
substrates using a Kinney vacuum system. The
apparatus consisted of a resistance heated Mo boat
and a metal plate positioned above it. The plate
served two purposes: first a circular hole in the
plate directly above the boat acted as a mask for
the substrate placed on top of the plate, and
secondly the plate shielded most of the heat
radiations coming from the heating resistance. The
sides of the bell jar were also shielded with sheets
of Al foil. Glass microscope slides were used for the
substrates. To clean each slide, it was placed in
dilute solution of sodium hydroxide, rinsed with
distilled water, placed in dilute solution of nitric
acid, rinsed with distilled water, and finally rinsed
with ethyl alcohol. The clean slide was then clamped
lightly in position on top of the hole in the mask.

Metal shots of purity 99.9999, were obtained
from Apache Chemicals. For each film, a few small
pieces were placed in the Mo boat, with the clean
substrate and the mask directly above the boat. For
all of the films prepared, the distance between the
boat and the substrate was 4 cm. The bell jar was

@NOIS)

Lizenz.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der
Creative Commons Lizenzbedingung ,Keine Bearbeitung*) beabsichtigt,
um eine Nachnutzung auch im Rahmen zukiinftiger wissenschaftlicher

Nutzungsformen zu erméglichen.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift fir Naturforschung
in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Férderung der

ND Wissenschaften e.V. digitalisiert und unter folgender Lizenz verdffentlicht:
Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift
fiir Naturforschung in cooperation with the Max Planck Society for the
Advancement of Science under a Creative Commons Attribution-NoDerivs
3.0 Germany License.

On 01.01.2015 it is planned to change the License Conditions (the removal
of the Creative Commons License condition “no derivative works”). This is
to allow reuse in the area of future scientific usage.



N. C. Halder - Structure and Properties of Vacuum-Deposited Cadmium Thin Films

pumped down to a pressure of about 10-6 torr, and
then current through the boat was slowly turned
on. The film thicknesses were controlled by control-
ling the current through the heating resistance and
time of deposition. A calibration curve was first
obtained with current and time for thickness
monitoring before the experimental films were
made. The film thicknesses were measured outside
the vacuum chamber by the gravimetric method.
The films were identified in the increasing order of
thicknesses. This is illustrated in Table 1. The film
temperature was not monitored, but kept constant
throughout the experiment for all the films.
A number of heat shields were used to stop the
stray heat radiations.

Table 1. Thicknesses of the

Films Thickness Cd films prepared at about
a pressure of 106 torr onto

4 14,700 A microscopic glass substrates

B 22,000 A at 45°C.

C 25,300 A

D 217,700 A

2.2. Recording of X-ray Diffraction Pattern

The x-ray diffraction patterns of the thin films
were recorded [3, 4] on a vertical Philips diffractom-
eter with the flat sample focusing condition. The
Ni-filtered CuKa radiation was used. The x-ray
beam was collimated through 1° divergence slit and
passed through .006° receiving slit. Each diffraction
peak was scanned at 1/8° per minute scanning
speed and recorded at 30 inches per hour paper
chart speed. The intensity scale, the baseline and
the time constant were adjusted each time, depend-
ing on the intensity and broadening of the peak.
Because of the importance of the peak tails, care
was taken to collect the background level over
sufficiently large angular spread on either side of
the peak maximum. Seven diffraction peaks 002,
100, 101, 102, 103, 004 and 104 were recorded.

In recording the diffraction pattern, it was
noticed that certain peaks in the thin films were
much stronger than the corresponding peaks in the
powder sample. In particular, the 002, 100 and 004
peaks were many times stronger; however, the
101, 102 and 103 peaks were somewhat less stronger.
On the other hand, the 110 and 112 peaks were
much weaker in films than in powder. The Miller
indices were assigned from the computed Bragg
angles (shown in Table 2) using the theoretical
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Table 2. Integral breadth of the measured peaks. The unit
used is 103 radians.

Peaks A B C D

002 1.24 1.23 1.12 1.31
100 1.38 1.08 1.06 1.26
101 1.32 1.11 1.11 1.36
102 1.49 1.13 1.18 1.27
103 1.15 1.22 1.08 1.22
004 1.13 1.12 1.11 1.18
104 1.34 1.59 1.23 1.44

lattice parameters for Cd, a=2.9787 and c=
5.6170 A. In order to analyze the diffraction peaks,
data points at equal intervals of 0.025° in two
theta were tabulated for computation.

The experimental profiles were first subjected to
various correction procedures before analyzing
them. The first one is the application of Lorentz
polarization (LP) factor [16, 17] due to non-
polarized x-ray beam and the second one is the
removal of ag doublet [18 —21] of the Cu radiation.

About required separation of the CuKa; peak
from CuKas peak, a number of suggestions have
been made [11, 19] in recent years illustrating some
essential differences in the various computational
procedures. In reality, however, the traditional
Rachinger method [20, 21] is still applicable and
could be used when some of the suggested changes
in the paper of Gangulee [11], and Delhez and
Mittemeijer [19] (DM) are included. In the Gangulee
[11] method one can separate the o; peak from ao
by direct use of the Fourier coefficients as in the
Stokes procedure. But in the DM procedure, an
angular dependent doublet separation function is
introduced within a particular peak. For example,
the intensities of the two peaks are related to the
observed peak by

b (20) = ko, (20) + by, (260) (2.1)
and 5, (20 — ) =C1h,,(20)
where C1 =2, (2.2)

in which ¢ is the angular separation between «; and
a2 peak maximum. In the original work of Rachin-
ger 6 was substituted to be a constant

6=260, — 20, (2.3)

which in the paper by DM was replaced by angular
dependent functions, such as,

P}
%:2mmm&;me—2% (2.4)

1
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or

0B = 2 tan § A2/ . (2.5)

The later improvement, which is theoretically more
appropriate, certainly gives very little or no
oscillations towards the high angle side of the
diffraction peak under study. It is now well under-
stood that these oscillations are not due to any
termination or computational errors in the data
analysis procedure rather due to the effect of
constant ¢ function used earlier. In principle the
Rachinger method is not wrong but angular
dependent doublet separation function 6 must be
used [22, 23] to minimize errors. In many inves-
tigations, a crystal monochromator can be placed
in the path of the primary beam to reduce the
intensity peak ratio of the Kay and Koy to a
significantly small value. In such experiments, the
Rachinger or any other method of separation is
totally unnecessary. Light and Wagner [5] used this
procedure in their study of Ag films.

3. Computer Analysis of the Experimental Data

3.1. The Geometrical Correction for Thin Films

For powder samples, whenever structural defor-
mations are investigated at room temperature or
lower than room temperature, it has become almost
a routine procedure to extract the geometrical
profile by annealing a portion of the deformed
sample to a very high temperature for sufficient
length of time so that all the mechanical stress and
strain are completely washed out within the
experimental detection. Another method, although
not very common, is to use the diffraction profile
of a powder of another sample where previous
studies indicated negligible or no x-ray line
broadening due to mechanical deformation, for
example quartz or calcite powder. If, however, the
line profile to be investigated is quite broad, no
such geometrical correction is necessary, since the
percentage error to be introduced in such a case
would be very small compared to other sources of
errors usually encountered in XDS. This is especially
applicable to amorphous solids, liquids and,
perhaps, polymers.

The problem we are facing with regard to
geometrical correction in the study of thin films is
quite different and cannot be handled by the
methods summarized above. First of all, prepara-
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tion of a standard sample by annealing a thin film
deposited on a glass substrate is out of the question,
since it is not practically feasible. Furthermore, the
diffraction lines from thin films have considerably
less broadening, but a lot of preferred orientation.
Therefore, application of another sample, such as
quartz or calcite, was equally unwarranted. Under
the circumstances, we shall proceed to solve this
problem analytically by performing a detailed
computer analysis of all the measured diffraction
lines.

We shall write the normalized physical Fourier
coefficients as complex quantities

H +iH{ (L)
Gy' (L) + Gy (L)
(3.1)

F(Ly=A(L)+:B(L)=

where H'(L) represents the Fourier coefficient of
the measured profile and G'(L) that of the geo-
metrical profile. By simple algebra, we get

H,'(L)Gy (L)+ Hi' (L)Gy' (L)

=" rermy  ¢?
and
Hy () 6y (L) — Hy (L)1 (D)
BO=""6rw a2
(3.3)

In the Fourier analysis of the actual diffraction
peaks one has to determine both cosine and sine
coefficients. Because the imaginary part, i. e., sine
part of the coefficients, were treated very small in
the past, the coefficients 4 (L) were approximated to

A(L) = Hy (L)G/(L). (3.4)

If, however, the imaginary parts are not small, then
their effects would be propagated into the elastic
strain and particle-size-faulting coefficients. Very
recently de Keijser and Mittemeijer [22] have
noted this effect and made some attempt to remove
this inconsistency. We shall, however, discuss here
both the real and imaginary parts of all the Fourier
coefficients. From Warren-Averbach theory we
have

F(L)= A(L) +i B(L)

— APF(L)(AD(L)+ i BP(L)  (3.)

where the particle size faulting coefficients APF (L)
are real numbers that do not depend on the order
of reflection. Quite contrary to this the strain
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coefficients are complex. We then find that
A(L) = APF(L) AD(L) (3.6)
and

B(L) = APF(L) BO(L). (3.7)

3.2. Real Part of the Fourier Coefficient

From the theory of Fourier analysis we can get,
for small strain values,

AD(L) =~ 1 — 272 L2 e12/d}y,
~ exp[— 272 L2 ex?[d}y] (3.8)
where
er, = {ep2)12

is the root mean square strain.
The particle size-faulting coefficients are shown
[16] to be

APF(L) =1 — L{Deye

(3.9)

(3.10)

where Dey; is the effective particle size that includes
faulting. Then

In Hy' (L) = In(1 — L/Degr) (3.11)
— (272 L2|d3y) er2 + In G'(L)

where H'(L) is still complex, but G'(L) is assumed
to be real. This is due to the fact that there is
little asymmetry due to structural deformation.
We shall then consider that the geometrical profiles
of these reflections are symmetrical functions.
These will be represented by Gaussian functions for
the sake of analytical computation. A logical choice,
which we shall elaborate momentarily, would be
to write it, similar to the strain coefficients,

272 K LZ}
B

G'(L) = exp {— (3.12)
where K is a geometrical parameter that does not
depend on the sample at all. It is then possible to
obtain the geometrical profile, by making inverse
Fourier transform of Eq. (3.12),

dnk B
g(x) = Vm exp|— -, 22|.

Thus, we find, in absence of any appropriate
practical standard sample,

(3.13)

2n2
2
dix

In Hy' (L) =In (1 — L/Degs) — (er?2+ K) L2.

(3.14)
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If we were to include the effect of preferred orienta-
tion as well, it would still be possible to proceed in
the above manner. The peak broadening with
different hkl arises from various microcrystallite
orientations in the film which are strong functions
of certain crystallographic direction and could be
identified with dpx;. We then introduce another
parameter S for preferred orientation and rewrite
the above equation as

In Hy' (L) = In (1 — L/Deg)
272
- (ex2+ K+ 8)L2. (3.15)
hkl

Thus a plot of In H,' (L) against 1/d3;; should be a
straight line for constant L when reflections
representing the same crystallographic direction
are used.

It should be recognized here that Degs is equiv-
alent to D for 002 and 004 reflections in hep samples.
The particle size effect in thin films, unlike powder
samples, is single crystal-like. That is, the size of
the coherently diffraction domain is sufficiently
large enough so as to be considered as negligible in
the above equation. Then, to a good approximation,
one can write

272
In He'(L) 2 — ——(er? + K + 8) L2 (3.16)

ikl
making In H,' (L) against L2 plot go through the
origin. Any deviation from the origin is a quanti-
tative measure of the amount of particle size effect.

As it is seen clearly from Egs. (3.15) and (3.16)
the meaning of the slope is more complicated than
that observed in powder samples. Nevertheless, it
is possible to elaborate on the nature and various
factors that contribute to the geometrical param-
eter K and the preferred orientation parameter S.

3.3. Imaginary Part of the Fourier Coefficient
The imaginary part of the strain coefficient is the
average of sine functions
BD(L) =<sin2x L ey /dpr1)
=~ 2n L{er)|dnm
=2n L éyr/dnir,

(3.17)

where ér, is the mean strain. Thus we can get

B(L) = (1 — L|Dett) 27 L éy/dpgi) - (3.18)

When using the coefficients of the measured
diffraction peaks directly, we obtain from Egs.
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(3.13), (3.12) and (3.18) (3.19)
In Hy (L) = In(1 — L/Degy)
+1n(2nLéL) . (K+8)L2.
dnit i

This equation is strongly nonlinear in d that does
not have any simple solution as is this case described
by its real counterpart in Equation (3.15). Never-
theless, we still can extract a lot of information by
taking advantage of a pair of reflections represent-
ing the same crystallographic direction. In the
present case reflection 002 and 004 will be suitable.
So for this pair of reflections

(ln Hi’ (L))()oz =1In (1 = L/De(f)
+ (27!L éL/dOOZ) = 27!2 L2 (K + S)/d%oz

and

(ln Hil (L))()04 =In (1 == L/Deu)
+ (27 L éy/doos) — 2702 L2 (K + 8)/d2, .

Recognizing that doo2 = 2dgo4, we find that

(4In Hy' (L))oos — (In Hy' (L))oo2 (3.20)
=3In 11— L/Def[) +3In(2xn L éL/d()oz) —In2.

By this process of elimination we have succeeded in
removing the difficulty of nonlinearity appearing
through the 1/d3; term. Since the first term of
Eq. (3.20) is already known from the real counter-
part as shown in Eq. (3.15) we can easily now
determine ¢y, for any desired value of L.

3.4. Exact Nature of the Geometrical Parameter K

The geometrical broadening in the diffraction
peak is due to one or more of the following causes
[24, 25]: (i) projected source function, (ii) sample
displacement function, (iii) axial divergence func-
tion, (iv) sample transparency function, (v) receiv-
ing slit function, (vi) sample misalignment function,
and (vii) spectral width function. We denote these
functions respectively by ¢1, 92, 93, 94, 95, g6 and g7 .
The geometrical broadening is then expressed as
convolution of all these,

g9(@) = g1* g2* g3* 94* g5* g6* g7 (3.21)
where the asterisks mean successive convolution of
the various g-functions. It is enormously difficult,
perhaps impossible, to evaluate the convolution
integral since there is no known exact way to

N. C. Halder - Structure and Properties of Vacuum-Deposited Cadmium Thin Films

measure or generate these functions. However,
some attempts have been made [16] to represent
these functions by appropriate analytical forms.

It has been shown [16] that the functions g, gs,
ge and g; are symmetric functions, whereas gz, g3
and g4 asymmetric. The effect of these asymmetric
functions is difficult to determine, but fortunately
for us this effect maybe perfected to zero by
performing experiments intelligently and carefully.
As for example, a symmetrical profile obtained
with diformation-free-standard quartz or calcite
powder will be indicative of vanishingly small effect
of the above asymmetric functions. After making
several tests on the experimental set up over wide
angular range, one can make the effect of the
asymmetric functions completely disappear.

We are now left with the effect of the symmetric
functions alone, which are inherent to every
diffraction experiment and that must be removed
analytically. We now make Fourier transform of the
functions g1, g5, g6 and g7 to obtain the geometrical
coefficient

7!2
L) = (m;km) (3.22)

. 2 L2 _}_ L _+_ L + _1_
CXPI| =T ey + ks kg2 | kp

where k's are constants for the respective functions
which may be estimated experimentally. Normaliz-
ing this coefficient as before, we find

1 1

kg2 T k2

On comparison of this equation with Eq. (3.12), we
obtain

1 1 1 1\d
K=( +o5+ )ﬂ

1 1
"L = S, o (Rl e
G'(L) exp[ 4 L<k12+ k52+

k,2 + ks?  ke?2 | k2 ) 2 (324)
Theoretically K is computable from the experi-
mental conditions of the apparatus, sample
geometry and value of the wavelength used. It has
been recently pointed out by Delhez et al. [22, 23]
that both the instrumental function g; (=g1, g5, gs)
and the spectral function gs (=g7) always do
contribute to the geometrical broadening in any
given experiment; however, they weigh the
geometrical broadening differently depending on
the actual angular position of the diffraction peak.
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They have demonstrated that gs is more important
than g; in the small angular range, but it reverses
itself in the high angular range.

4. Results and Discussions

4.1. Peak Heights, Peak Shapes and Peak Breadths

To record a diffraction peak for Fourier analysis,
it is not necessary to measure [21] the intensity in
absolute unit, but it is important to compare the
peak intensities among themselves on the same
scale. We have observed that 002 reflection was the
strongest followed by 100 reflection. The reflections
101, 102 and 103 were relatively less strong. The
reflection 104 was not detected in randomly
prepared polycrystalline samples. The peak heights
of all the reflections showed gradual enhancement
when the thickness of the films was raised from
14,700 to 27,700 A.

The peak shapes were affected very little with
thickness. In general the peaks were not absolutely
symmetrical. The high angle peaks were rather
broad, but quite strong so as to be meaningfully
included in the Fourier analysis. The integral
breadth, which is defined as the area under the peak
divided by the peak hieght, showed some definite
decrease with thickness. The experimental points
as tabulated in Table 2 show some scattering, which
is due to the extrasensitivity of the very strong
peaks, a characteristic of thin film samples. When
these points are plotted this difficulty, however,
does not appear, and a smooth set of data points
are easily obtained.

4.2. Features of the Real and Imaginary Parts
of Fourier Coefficients

The Fourier coefficients of 100, 002, and 004
reflections are shown in Figs.1la—d. We have
plotted both the real and imaginary parts of all
coefficients to illustrate their respective behavior.
In the past the effect of the imaginary part was
considered trivial, and hence it was completely
ignored for any kind of quantitative use. H;  is
always positive and attains a maximum value of 1
as L — 0 for all reflections. On the other hand,
H{' is negative in most part and tends to zero value
as L —0. In the thickness range considered,
H{ curves have the longest amplitude for 100
reflection. This means that 100 reflection must
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exhibit the highest microstrain due to structural
disorder. The oscillations for 004 reflection seem to
be more rapid than the others. They do not,
however, become positive until about L =200 A.
Each one of these Hj’ curves has a number of very
distinct features and one can identify them quite
readily. The real parts of the coefficients are
relatively featureless. Nevertheless, they become
totally separable in the region of large L.

For the reflections with faulting we have plotted
in Figs. 2a and 2b the total Fourier coefficient H';
separate plots of H;’ and H,' are not necessary as
they do not give any additional information. The
general characteristics of 101, 102, 103 and 104 are
very similar.

4.3. Particle Size amd Microstrain

It is well established [4] that for hep structures
the reflections satisfying h —k=3N

(d4P¥/dL);—o = — 1/D (4.1)
where N is an integer. These reflections are 002 and
004 in the present case. But due to the difficulty
pointed out in Section ITI, we are forced to select

an alternative approach. We return to Eq. (3.15)
and take the first derivative to obtain

0H,' (L) _ 4n2 L % b 2L i
oL === d%kl (ex2+ K+ 8) (4.2)
2n2
-(1—L/D) exp[— 7 (er2 + K-{—S)Lz]
hkl
E i 21 K-+ 8)L2
—-fexp _d%kl (er2+ K + 8)
which in the limit L — 0 reduces to
(8Hy'(L)[oL)r~o = — 1/D. (4.3)

Proceeding in the same manner we find from
Eq. (3.19), for the imaginary part of the coefficient,

oHy 472 L
1 — (K + 8)(1 — L/D)(2x &r)dan)
oL Ay
[ 2n2 2mer
-exp| — (K+8)|+ (1—L/D)
| di dp
272 2n ey L
[ 2x2
-exp| — dTm (K+8)|. (4.4)
This simply gives in the limit L — 0
(0H{'|0L) =0 = 27 év[dnk1 - (4.5)
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Fig. 2. The plots of total Fourier coefficients of Cd thin films. (a) Film A (top) and Film B (bottom); (b) Film C

(top) and Film D (bottom).

The amount of anisotropy in ér for the three
directions included here is quite significant com-
pared to that in D. We shall, therefore, retain the
directional dependence of ér,, but take the average
value D for subsequent discussions. These data are
displayed in Figure 3.

From the data we see that microstrains fall very
rapidly with thickness in the initial stage. They,
however, reach respective <saturation values,,
above about 25,000 A. The particle size, on the
other hand, increases first becoming almost
saturated at about the same value of thickness.
These two effects together suggest that source of
the structural disorder, which in this case is the
thermally induced one, attains a stable equilibrium

at this thickness. The microstrain decreases by
about 509,, but the particle size increases only
about 149, in this thickness range. This fact is the
result of a two step process. In the first step, part
of the disorder is released by rearrangement of the
atoms towards the minimum potential energy
during deposition of the films; in the second step
the Cd atoms form some kind of coherently diffract-
ing domains, whereby some atomic planes con-
veniently follow preferred orientation. This latter
step presumably causes a change in the size of the
various domain volume. What we have discussed
above in terms of particle size is actually D= (V)1/3,
where V is average volume of the domains, and it is
measured in a direction perpendicular to the
diffracting plane.
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Fig. 3. Variation of average particle size ) and micro-
strain 1, as function of film thickness. 7) was not found to
have any directional dependence as er,.

4.4. Deformation and Growth Faults

If we were to take Eq. (4.3) for 101, 102, 103 and
104 reflections it would directly give
(0H,'(L)[0L) -0 = (0H' (L)/0L) -0

= — 1/Dest (4.6)

where
1/Dett = 1/D + 1/Dy. (4.7)

In Eq. (4.7) Dy is the fault size that includes the
deformation fault probability « and growth fault
probability S,

1/Dy = (|1| dnxi/c?) (Ba + B)

for 101 and 103 (4.8a)
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Fig. 4. Dependence of effective particle size Degr on film
thickness showing the influence of various crystal direc-
tions. Degr refers to the reflections with faulting.

or

1/Dy = (|| dnxr/c?) (3a + 3 )

for 102 and 104 . (4.8b)

Physically what « and f represent is this. Since in
hep structures, 002 planes form close packed layers
with stacking sequence ABABABAB, a growth
fault indicates a stacking disorder from AB to BC
resulting in a new sequence ABABCBCB. Alter-
natively, another possibility exists, that is defor-
mation fault, which forms the sequence ABABCACA
instead of the other. The calculated values of D and
Dy are shown in Table 5. As it has been accom-
plished earlier, the particle size D did not seem to
contain strong directional dependence. We have,
therefore, conveniently used this result to compute
Dy, and hence « and S.

The plots of the fault parameters (3a+ f) and
(3x+3p) are shown in Figure 5. Once again, a
strong directional dependence is observed, which is
as significant as the microstrain calculation. There-
fore, no attempt will be made here to suppress this
in computing the individual probabilities o and £,
which requires two sets of reflections in the same
crystal direction. These fault parameters, however,
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Fig. 5. The plots of fault parameters (3« + f) and (30 4 3 )
as function of film thickness.

do indicate that both « and f diminish rapidly
with thickness following

Bx+p) or (Ba+38)=A— Bt—Ct(4.9)

relations, where ¢ is the thickness and the constants
A~10-3, B~10-8 A-1 and 0 =10-12 A-2Their
exact values may be determined by actual curve
fitting procedure. This interpretation is consistent
with the earlier arguments proposed for micro-
strain and particle size. Apparently, both « and g
have the same order of magnitude ~ 10-3 and
equal degree of effect on faulting.

4.5. Peak Shifts and Spacing Faults

One of the important quantities in the x-ray
line broadening analysis is the peak shift. The
plots of 26 against thickness are found to be linear
for all reflections over the entire thickness range.
No noticeable change was observed for 002 and
004 reflections. The shift for 100 reflection is rather
small compared to 101, 102, 103 and 104 reflections.

Theoretical works [26] on hep structures suggest
that for infinite crystal size, random fault distribu-
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tion and extension of faults over the entire domain
size, the lattice parameter ¢ would be affected
according to the relation

c=co(l +a’ &) (4.10)

where co is the theoretical value in absence of
disorder, o’ is the layer fault probability and ¢’ is
a theoretical constant less than unity. A layer fault
consists [1; 2] of two parts: first a change in inter-
planar spacing called spacing fault, and secondly a
change in the stacking sequence of atomic planes
called stacking faults. We have already seen before
that the stacking faults are described by deforma-
tion and growth faults. The peak shifts 4(26)=
(20)¢heo — (260)ops are shown to be

720 [ 12 d2
A(260) =—*(7;‘L’) (4.11a)
‘(tan @)y’ ¢’ for h—k=3N
and
360 [ 12d2
A@20%) =~ (——(}”’—) (4.11D)

‘(tan @)y’ 6’ for h—k=3N+1

where N is an integer and

y=ad(1l4+a)~a for o <1. (4.12)

Thus the above equations predict that, for [=0,
the shift 4260=0, which should be satisfied by
100 reflection. Unfortunately, this does not appear
to be the case. Furthermore, the theory [26] also
predicts that reflections with A—k=3N should
be shifted twice as much and in opposite direction
as the reflections with A—k=3N 4+ 1. In the
present study the data indicate that all shifts are
unidirectional and positive, except 004. This
departure is perhaps the consequence of inadequacy
or inappropriateness of the spacing fault theory.
We [1, 2] have arrived at a similar dilemma in our
earlier study of polycrystalline Mg and Cd.

The peak shifts are vanishingly small for all
reflections indicating a small probability for layer
fault. The lattice spacings are observed to be linear
function of thickness within the limits of our error
bar and least square fit of the data. However, the
unit cell ratio ¢/a remains constant at 1.8850 com-
pared to its bulk value 1.8858. Witt and Vook [8]
earlier suggested that peak shifts in thin films of
hep crystals could arise from thermally induced
strains. Thus a small peak shift might be inter-
preted as due to small thermally induced strains.
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5. Summary of the Results and Proposed Models

In the present investigation of vacuum deposited
Cd thin films we have obtained several important
results. First of all, the films of hcp metals are
characterized by strong preferred orientation along
the 002 planes parallel to the surface of the sub-
strate, and that this preferred orientation is a
strong function of thickness of the film. In partic-
ular, 100, 002, 004 peaks are many times stronger
than their corresponding diffraction peaks obtained
from polycrystalline powder samples. In face
centered cubic (fcc) metals, however, 111 reflection
shows the highest preferred orientation, and one
can find what is known as ‘“‘orientation factor by
determining the ratio of the integrated intensities
between the most affected 111 reflection and the
least affected 200 reflection. We have demonstrated
in this work that the preferred orientation and
geometrical broadening can be removed by decon-
volution method using standard analytic forms of
these functions. The effect of preferred orientation
and geometrical broadening is shown to be coupled
with the root mean square strain term. While a
complete decoupling of each one of them is experi-
mentally a formidable task, this difficulty never-
theless does pose no serious problem in working with
Fourier analysis and investigating of other im-
portant effects, such as particle size, microstrain
and faulting.

The thin films show a considerable x-ray line
broadening due to thermally induced strain, which
seemingly originates from a condition of mismatch
of the thermal expansion between the glass sub-
strate and Cd films. One way to represent this
quantitatively would be two write [8] the thermal
strain as

ér = Qg aﬂ (oq — (Xg) AT (51)

where a,s are rotation matrices which are defined
by Witt and Vook [8]. Furthermore, o and og are
respectively the linear thermal expansion of the
film and glass, and A7 is the difference in tem-
perature, usually it is about 40~ 300°C. We
assume the average value of the thermal expansion
coefficient for Cd bulk a; =30 x 10-6/°C and that
for ordinary glass ag=9 X 10-6/°C and a probable
range of temperature A7 = 50 °C. Apparently, since
we are considering the thermal expansion effect
along the plane of the substrate, an additional
factor of 4 should be introduced into Eq. (5.1)
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according to Witt and Vook [8]. In this way, we
can estimate the microstrain in the films to be

er ~ 4 X 10-3. (5.2)

Indeed, the order of magnitude of ey is quite close
to the present microstrain calculation.

To the knowledge of this author, no other
detailed study on thin films of hep metal is avail-
able. There are a few studies on thin films of some
fce metals, for example, Cu, Ag, Au and Al. We
shall first compare our results with those of fee
metals and then propose interpretation of these
results. Gangulee [11] has made a comparative
study between electroplated and evaporated Cu
film. He found for fee Cu films a decrease of micro-
strain (which was actually the root mean square
strain in his analysis) with film thickness. Further-
more, Cu films indicated no stacking faults,
extrinsic- or intrinsic-type, although Cu bulk did
show appreciable faulting in earlier studies [27, 28].
In Cd films we found a definite evidence of stacking
faults, both o and B, in contrast to Cd bulk where
only o has been detected [1]. For Ag, however,
stacking faults have been detected in films [5] as
well as in bulk [29, 30]. In this respect, Gangulee‘s
interpretation that the strain anisotropy that
promotes stacking faults in polycrystalline samples
should collapse into undissociated dislocation loops,
does not appear to hold. Alternatively, we find that
the strain anisotropy in Cd film is much stronger
than in Cd bulk, and consequently suggest that
increase of anisotropy at the expense of unfavorable
dislocation loops generates more of stacking faults.
It should be remarked that for Cd bulk o ~ 3 x 103
and § ~ 0.

The lattice parameters in Cd films increase with
thickness. Light and Wagner [5], and Sen et al. [12]
found that it decreases in Ag films with thickness.
Walker [10] observed an increase in Al films with
thickness. Vook and Witt [8] noted a decrease in
Au films with thickness. From these results it will
be sufficient to say that there is no a priori reason
to believe that the lattice parameter would go
either way with thickness. What can be said, at
least, is this, that the behavior of lattice parameter
is intrinsically related to the strain anisotropy and
faulting of the films. It has been suggested by
Walker [10] that in thin films the amount of scatter-
ing of the points representing various reflections
on either side of the linear plot between lattice
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parameter and Nelson-Riley function is a strong
evidence of fault being present in the sample. We
believe that it is the combination of the various
weighting factors of the individual fault probabilities
that should determine the negative or positive
deviation of the lattice parameter from the bulk
sample.

The particle size in Cd films is approximately of
the same order of magnitude as in Cd bulk; but in
Cu film the particle size was found [11] to be much
smaller than that in Cu bulk. We postulate that the
line broadening in Cd films is due predominantly to
strain anisotropy and faulting, whereas in Cu films
it is due primarily to particle size. This inter-
pretation may be further substantiated by the fact
that particle size in Cd films changes only by 149,
against a substantial change of 509, of the micro-
strain for the thickness range incorporated in this
study.

As mentioned above, for fece metals the ratio

R = (Intensity)111/(Intensity)z200 (5.3)

has been used [11] as preferred orientation param-
eter, which decreased with film thickness for
Cu films. Alternatively what we have proposed is a
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parameter S through Egs. (3.15) and (3.19). It
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very complicated geometrical parameter, whose
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In summary, we would like to reiterate that we
have been able to study structural properties of Cd
films with high degree of success by x-ray line
broadening analysis. For the first time, we have
shown that both the sine and cosine components of
the Fourier coefficients are equally important, and
that the effect of preferred orientation and geo-
metrical broadening can be accounted for by Fourier
coefficients of some appropriate analytic functions.
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