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Thin films of Cd were prepared by vacuum deposition onto glass plates at temperature of 
45 °C and pressure of about 10~6 torr. Several good quality films of various thicknesses (15,000 
~ 28,000 Ä) were made. The films were characterized by strong preferred orientation along the 
002 planes parallel to the surface of the substrate, which were found to be thickness dependent. 
In particular, the 002, 100 and 004 peaks were many times stronger than their corresponding 
diffraction peaks obtained from powder specimens. Both the real and imaginary parts of the 
Fourier coefficients were considered for line broadening analysis. The particle size (which is also 
called the average size of the coherently diffracting domains in a direction perpendicular to the 
diffracting planes), microstrain (which is usually called the mean strain in a given direction) and 
faulting were determined. A systematic study for all the diffraction peaks indicates an increase 
of average particle size J) from 546 to 620 A in the above thickness range with no apparent 
anisotropy for the 100, 002 and 004 directions. The microstrain, however, decreased as much as 
50% in this thickness range and showed a considerable amount of anisotropy. The fault param-
eters a (deformation fault probability) and ß (growth fault probability) decreased rather rapidly 
for all directions. 

1. Introduction 

This is the third paper in our series of publications 
on the x-ray diffraction study (XDS) of hexagonal 
close packed (hep) metals. In our earlier papers 
[1, 2] (hereafter will be referred to as paper I and 
paper II), we have studied the x-ray line broaden-
ing phenomena in deformed hep polycrystalline 
Cd, Mg and Zn powders. In the present paper we 
report a complementary study in evaporated thin 
films of Cd. The microstructure of powder samples 
of metals and alloys has been extensively studied 
[3—5], by x-ray diffraction method over the period 
of last two decades and many important advance-
ments have been made in the theory and application 
by such studies. However, only a few corresponding 
studies [6—15] have been reported in the thin films 
of metals and alloys. The main reasons are that 
(i) the microcrystallites in thin films are not 
randomly deposited such as found in powders, 
(ii) films should be very uniform, sufficiently thick 
and good quality for XDS measurement, and 
(iii) the corrections due to geometrical effect and 
preferred orientation are not easy to perform 
experimentally. On the other hand, the phenomena 
of thin films have become a very important field of 
research, because of their many interesting features 
and variety of applications. The purpose of this 
investigation is to understand the structural defects 
and properties in thin films of hep metals. Although 
Cd has rather high vapor pressure, this metal was 
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selected because we have already studied its 
structural properties in the powder form, but no 
such study exists in the thin films of this metal 
except some preliminary studies by us [13]. 

2. Experimental 

2.1. Preparation of Thin Films 
Thin films of Cd were prepared with various 

thicknesses by evaporation onto microscopic glass 
substrates using a Kinney vacuum system. The 
apparatus consisted of a resistance heated Mo boat 
and a metal plate positioned above it. The plate 
served two purposes: first a circular hole in the 
plate directly above the boat acted as a mask for 
the substrate placed on top of the plate, and 
secondly the plate shielded most of the heat 
radiations coming from the heating resistance. The 
sides of the bell jar were also shielded with sheets 
of Al foil. Glass microscope slides were used for the 
substrates. To clean each slide, it was placed in 
dilute solution of sodium hydroxide, rinsed with 
distilled water, placed in dilute solution of nitric 
acid, rinsed with distilled water, and finally rinsed 
with ethyl alcohol. The clean slide was then clamped 
lightly in position on top of the hole in the mask. 

Metal shots of purity 99.999% were obtained 
from Apache Chemicals. For each film, a few small 
pieces were placed in the Mo boat, with the clean 
substrate and the mask directly above the boat. For 
all of the films prepared, the distance between the 
boat and the substrate was 4 cm. The bell jar was 
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pumped down to a pressure of about 10~6 torr, and 
then current through the boat was slowly turned 
on. The film thicknesses were controlled by control-
ling the current through the heating resistance and 
time of deposition. A calibration curve was first 
obtained with current and time for thickness 
monitoring before the experimental films were 
made. The film thicknesses were measured outside 
the vacuum chamber by the gravimetric method. 
The films were identified in the increasing order of 
thicknesses. This is illustrated in Table 1. The film 
temperature was not monitored, but kept constant 
throughout the experiment for all the films. 
A number of heat shields were used to stop the 

Table 1. Thicknesses of the 
Cd films prepared at about 
a pressure of 10~6 torr onto 
microscopic glass substrates 
at 45 °C. 

2.2. Recording of X-ray Diffraction Pattern 

The x-ray diffraction patterns of the thin films 
were recorded [3, 4] on a vertical Philips diffractom-
eter with the flat sample focusing condition. The 
Ni-filtered CuKa radiation was used. The x-ray 
beam was collimated through 1 ° divergence slit and 
passed through .006° receiving slit. Each diffraction 
peak was scanned at 1/8° per minute scanning 
speed and recorded at 30 inches per hour paper 
chart speed. The intensity scale, the baseline and 
the time constant were adjusted each time, depend-
ing on the intensity and broadening of the peak. 
Because of the importance of the peak tails, care 
was taken to collect the background level over 
sufficiently large angular spread on either side of 
the peak maximum. Seven diffraction peaks 002, 
100, 101, 102, 103, 004 and 104 were recorded. 

In recording the diffraction pattern, it was 
noticed that certain peaks in the thin films were 
much stronger than the corresponding peaks in the 
powder sample. In particular, the 002, 100 and 004 
peaks were many times stronger; however, the 
101, 102 and 103 peaks were somewhat less stronger. 
On the other hand, the 110 and 112 peaks were 
much weaker in films than in powder. The Miller 
indices were assigned from the computed Bragg 
angles (shown in Table 2) using the theoretical 
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Table 2. Integral breadth of the measured peaks. The unit 
used is 103 radians. 

Peaks A B C D 

002 1.24 1.23 1.12 1.31 
100 1.38 1.08 1.06 1.26 
101 1.32 1.11 1.11 1.36 
102 1.49 1.13 1.18 1.27 
103 1.15 1.22 1.08 1.22 
004 1.13 1.12 1.11 1.18 
104 1.34 1.59 1.23 1.44 

lattice parameters for Cd, a = 2.9787 and c = 
5.6170 A. In order to analyze the diffraction peaks, 
data points at equal intervals of 0.025° in two 
theta were tabulated for computation. 

The experimental profiles were first subjected to 
various correction procedures before analyzing 
them. The first one is the application of Lorentz 
polarization (LP) factor [16, 17] due to non-
polarized x-ray beam and the second one is the 
removal of a2 doublet [18—21] of the Cu radiation. 

About required separation of the CuKai peak 
from CUK<X2 peak, a number of suggestions have 
been made [11, 19] in recent years illustrating some 
essential differences in the various computational 
procedures. In reality, however, the traditional 
Rachinger method [20, 21] is still applicable and 
could be used when some of the suggested changes 
in the paper of Gangulee [11], and Delhez and 
Mittemeijer [19] (DM) are included. In the Gangulee 
[11] method one can separate the ai peak from a2 
by direct use of the Fourier coefficients as in the 
Stokes procedure. But in the DM procedure, an 
angular dependent doublet separation function is 
introduced within a particular peak. For example, 
the intensities of the two peaks are related to the 
observed peak by 

Aa(20) = Äai(20) + M 2 0 ) (2-1) 
and K1(2d-d)=C1K2(26) 

where Ci = 2, (2.2) 

in which <5 is the angular separation between ai and 
a2 peak maximum. In the original work of Rachin-
ger <5 was substituted to be a constant 

<5 = 201 - 202 (2.3) 
which in the paper by DM was replaced by angular 
dependent functions, such as, 

(5a = 2 arc sin sin 0X j — 2 0X (2.4) 

stray heat radiations. 

Films Thickness 

A 14,700 A 
B 22,000 A 
C 25,300 A 
D 27,700 A 
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or 
(5b = 2 tan 0 zJA/<A> . (2.5) 

The later improvement, which is theoretically more 
appropriate, certainly gives very little or no 
oscillations towards the high angle side of the 
diffraction peak under study. It is now well under-
stood that these oscillations are not due to any 
termination or computational errors in the data 
analysis procedure rather due to the effect of 
constant d function used earlier. In principle the 
Rachinger method is not wrong but angular 
dependent doublet separation function 6 must be 
used [22, 23] to minimize errors. In many inves-
tigations, a crystal monochromator can be placed 
in the path of the primary beam to reduce the 
intensity peak ratio of the Ka2 and Kai to a 
significantly small value. In such experiments, the 
Rachinger or any other method of separation is 
totally unnecessary. Light and Wagner [5] used this 
procedure in their study of Ag films. 

3. Computer Analysis of the Experimental Data 

3.1. The Geometrical Correction for Thin Films 

For powder samples, whenever structural defor-
mations are investigated at room temperature or 
lower than room temperature, it has become almost 
a routine procedure to extract the geometrical 
profile by annealing a portion of the deformed 
sample to a very high temperature for sufficient 
length of time so that all the mechanical stress and 
strain are completely washed out within the 
experimental detection. Another method, although 
not very common, is to use the diffraction profile 
of a powder of another sample where previous 
studies indicated negligible or no x-ray line 
broadening due to mechanical deformation, for 
example quartz or calcite powder. If, however, the 
line profile to be investigated is quite broad, no 
such geometrical correction is necessary, since the 
percentage error to be introduced in such a case 
would be very small compared to other sources of 
errors usually encountered in XDS. This is especially 
applicable to amorphous solids, liquids and, 
perhaps, polymers. 

The problem we are facing with regard to 
geometrical correction in the study of thin films is 
quite different and cannot be handled by the 
methods summarized above. First of all, prepara-

tion of a standard sample by annealing a thin film 
deposited on a glass substrate is out of the question, 
since it is not practically feasible. Furthermore, the 
diffraction lines from thin films have considerably 
less broadening, but a lot of preferred orientation. 
Therefore, application of another sample, such as 
quartz or calcite, was equally unwarranted. Under 
the circumstances, we shall proceed to solve this 
problem analytically by performing a detailed 
computer analysis of all the measured diffraction 
lines. 

We shall write the normalized physical Fourier 
coefficients as complex quantities 

(3.1) 

where H'(L) represents the Fourier coefficient of 
the measured profile and G'(L) that of the geo-
metrical profile. By simple algebra, we get 

Hr'(L)Gt'{L) + HaL)GaL) 

and 

A{L) 

B(L) = 

Gr'HL) + Gi'HL) 

ffi'(£)£/(£)- HT' (L) GV (L) 
Gr'HL) + Gi'HL) 

(3.2) 

(3.3) 
In the Fourier analysis of the actual diffraction 
peaks one has to determine both cosine and sine 
coefficients. Because the imaginary part, i. e., sine 
part of the coefficients, were treated very small in 
the past, the coefficients A (L) were approximated to 

A(L)^HT'(L)IG'(L). (3.4) 

If, however, the imaginary parts are not small, then 
their effects would be propagated into the elastic 
strain and particle-size-faulting coefficients. Very 
recently de Keijser and Mittemeijer [22] have 
noted this effect and made some attempt to remove 
this inconsistency. We shall, however, discuss here 
both the real and imaginary parts of all the Fourier 
coefficients. From Warren-Averbach theory we 
have 

F'{L) = A{L) + i B{L) 
= A^(L)(A^(L) + iB^{L)) (3.5) 

where the particle size faulting coefficients ^4PF(L) 
are real numbers that do not depend on the order 
of reflection. Quite contrary to this the strain 
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(3.8) 

(3.9) 

coefficients are complex. We then find that 
A (L) = AFF(L) ^4D(L) (3.6) 

and 
B(L) = A™{L) BP{L). (3 .7) 

3.2. Real Part of the Fourier Coefficient 

From the theory of Fourier analysis we can get, 
for small strain values, 

= EXPT— L2 CL2/D|FCI] 

where 
eL = <£L2>i'2 

is the root mean square strain. 
The particle size-faulting coefficients are shown 

[16] to be 
A*V(L) = L-LIDE„ (3.10) 

where _Deff is the effective particle size that includes 
faulting. Then 

I n H T ' ( L ) = ln(l - L/DE„) (3.11) 
-{1N2L2ldlkl) e L 2 + ln G'{L) 

where H'(L) is still complex, but G'(L) is assumed 
to be real. This is due to the fact that there is 
little asymmetry due to structural deformation. 
We shall then consider that the geometrical profiles 
of these reflections are symmetrical functions. 
These will be represented by Gaussian functions for 
the sake of analytical computation. A logical choice, 
which we shall elaborate momentarily, would be 
to write it, similar to the strain coefficients, 

( 2 n 2 K \ £'(£) = exp { ^ — L 2 \ (3.12) 
dt hkl 

where K is a geometrical parameter that does not 
depend on the sample at all. It is then possible to 
obtain the geometrical profile, by making inverse 
Fourier transform of Eq. (3.12), 

g(x) = 
dhkl 

|/2 N K 
exp 

J2 ahkl 
2 K (3.13) 

Thus, we find, in absence of any appropriate 
practical standard sample, 

In HR' ( L ) = In (1 - L/DE„) - (eL2 + K) L2 . 
ah hkl 

If we were to include the effect of preferred orienta-
tion as well, it would still be possible to proceed in 
the above manner. The peak broadening with 
different hkl arises from various microcrystallite 
orientations in the film which are strong functions 
of certain crystallographic direction and could be 
identified with dhkl • We then introduce another 
parameter S for preferred orientation and rewrite 
the above equation as 

In HT' ( £ ) = In (1 — L/DETT) 

2 + K + 8)L 2 . (3.15) 
ahkl 

Thus a plot of In HR' (L) against 1 JD^ should be a 
straight line for constant L when reflections 
representing the same crystallographic direction 
are used. 

It should be recognized here that DETT is equiv-
alent to D for 002 and 004 reflections in hep samples. 
The particle size effect in thin films, unlike powder 
samples, is single crystal-like. That is, the size of 
the coherently diffraction domain is sufficiently 
large enough so as to be considered as negligible in 
the above equation. Then, to a good approximation, 
one can write 

In HT'{L) ^ 
2^2 

dl 
(ej2 K -{- S) L2 (3.16) 

hkl 

(3.14) 

making In HR' (L) against L2 plot go through the 
origin. Any deviation from the origin is a quanti-
tative measure of the amount of particle size effect. 

As it is seen clearly from Eqs. (3.15) and (3.16) 
the meaning of the slope is more complicated than 
that observed in powder samples. Nevertheless, it 
is possible to elaborate on the nature and various 
factors that contribute to the geometrical param-
eter K and the preferred orientation parameter S. 

3.3. Imaginary Part of the Fourier Coefficient 

The imaginary part of the strain coefficient is the 
average of sine functions 

B»(L) = (SINLN L E^JDHKI) 

Lie^jdhki (3.17) 
= 27iLeLldhki, 

where ej, is the mean strain. Thus we can get 
B(L) = (1 - L/DEUWNLEIJDKH). (3.18) 

When using the coefficients of the measured 
diffraction peaks directly, we obtain from Eqs. 
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(3.13), (3.12) and (3.18) 
\XIHI (L) = l n ( l — L/DETT) 

2nLeL\ 2 TI2 
- f in 

dhkl 4M 

(3.19) 

(K + S)L2. 

This equation is strongly nonlinear in d that does 
not have any simple solution as is this case described 
by its real counterpart in Equation (3.15). Never-
theless, we still can extract a lot of information by 
taking advantage of a pair of reflections represent-
ing the same crystallographic direction. In the 
present case reflection 002 and 004 will be suitable. 
So for this pair of reflections 

(In Hi (X))oo2 = In (1 — L/Dett) 
+ (2jcLeLld002) -2n2L2(K + S)ld2002 

and 
(In Hi (L))oo4 = In (1 — LjDeu) 

+ (2 71L eL/doo4) - 2 Ti2 L2 (K + S)ld204 . 

Recognizing that dooz = 2 t?oo4 > we find that 
(4 In HI' (L))oo4 - (In H(L))002 (3.20) 

= 3 In (1 - L/Dett) + 3 In (2nL eL/d002) - In 2. 

By this process of elimination we have succeeded in 
removing the difficulty of nonlinearity appearing 
through the term. Since the first term of 
Eq. (3.20) is already known from the real counter-
part as shown in Eq. (3.15) we can easily now 
determine ej, for any desired value of L. 

measure or generate these functions. However, 
some attempts have been made [16] to represent 
these functions by appropriate analytical forms. 

It has been shown [16] that the functions <71, <75, 
ge and <77 are symmetric functions, whereas g2, g3 

and <74 asymmetric. The effect of these asymmetric 
functions is difficult to determine, but fortunately 
for us this effect maybe perfected to zero by 
performing experiments intelligently and carefully. 
As for example, a symmetrical profile obtained 
with diformation-free-standard quartz or calcite 
powder will be indicative of vanishingly small effect 
of the above asymmetric functions. After making 
several tests on the experimental set up over wide 
angular range, one can make the effect of the 
asymmetric functions completely disappear. 

We are now left with the effect of the symmetric 
functions alone, which are inherent to every 
diffraction experiment and that must be removed 
analytically. We now make Fourier transform of the 
functions gx, g$, g$ and g7 to obtain the geometrical 
coefficient 

G(L) 

• exp 

ki k5 kß k7 

/ 1 1 1 1 
71 \ ki2 &52 kß2 ki2 

(3.22) 

where k's are constants for the respective functions 
which may be estimated experimentally. Normaliz-
ing this coefficient as before, we find 

3.4. Exact Nature of the Geometrical Parameter K G (L) — exp 
/ 1 1 1 1 

kß2 &72 

The geometrical broadening in the diffraction 
peak is due to one or more of the following causes 
[24, 25]: (i) projected source function, (ii) sample 
displacement function, (iii) axial divergence func-
tion, (iv) sample transparency function, (v) receiv-
ing slit function, (vi) sample misalignment function, 
and (vii) spectral width function. We denote these 
functions respectively by gx, g2, g3, g^, g5, g6 and g1. 
The geometrical broadening is then expressed as 
convolution of all these, 

(3.23) 

On comparison of this equation with Eq. (3.12), we 
obtain 

K -
1 1 1 1 

&12 k§2 kß2 ^ &72 

lhkl 
2 (3.24) 

9 0*0 = 91* 92* g3* 94* ga* 06* 91 (3.21) 

where the asterisks mean successive convolution of 
the various ^-functions. It is enormously difficult, 
perhaps impossible, to evaluate the convolution 
integral since there is no known exact way to 

Theoretically K is computable from the experi-
mental conditions of the apparatus, sample 
geometry and value of the wavelength used. It has 
been recently pointed out by Delhez et al. [22, 23] 
that both the instrumental function gx ( = <71, gr5, gß) 
and the spectral function g$ [ = gi) always do 
contribute to the geometrical broadening in any 
given experiment; however, they weigh the 
geometrical broadening differently depending on 
the actual angular position of the diffraction peak. 
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They have demonstrated that gs is more important 
than gi in the small angular range, but it reverses 
itself in the high angular range. 

4. Results and Discussions 

4.1. Peak Heights, Peak Shapes and Peak Breadths 

To record a diffraction peak for Fourier analysis, 
it is not necessary to measure [21] the intensity in 
absolute unit, but it is important to compare the 
peak intensities among themselves on the same 
scale. We have observed that 002 reflection was the 
strongest followed by 100 reflection. The reflections 
101, 102 and 103 were relatively less strong. The 
reflection 104 was not detected in randomly 
prepared polycrystalline samples. The peak heights 
of all the reflections showed gradual enhancement 
when the thickness of the films was raised from 
14,700 to 27,700 Ä. 

The peak shapes were affected very little with 
thickness. In general the peaks were not absolutely 
symmetrical. The high angle peaks were rather 
broad, but quite strong so as to be meaningfully 
included in the Fourier analysis. The integral 
breadth, which is defined as the area under the peak 
divided by the peak hieght, showed some definite 
decrease with thickness. The experimental points 
as tabulated in Table 2 show some scattering, which 
is due to the extrasensitivity of the very strong 
peaks, a characteristic of thin film samples. When 
these points are plotted this difficulty, however, 
does not appear, and a smooth set of data points 
are easily obtained. 

4.2. Features of the Real and Imaginary Parts 
of Fourier Coefficients 

The Fourier coefficients of 100, 002, and 004 
reflections are shown in Figs, la—d. We have 
plotted both the real and imaginary parts of all 
coefficients to illustrate their respective behavior. 
In the past the effect of the imaginary part was 
considered trivial, and hence it was completely 
ignored for any kind of quantitative use. Hr' is 
always positive and attains a maximum value of 1 
as L —> 0 for all reflections. On the other hand, 
Hi is negative in most part and tends to zero value 
as L - » 0 . In the thickness range considered, 
Hi curves have the longest amplitude for 100 
reflection. This means that 100 reflection must 

exhibit the highest microstrain due to structural 
disorder. The oscillations for 004 reflection seem to 
be more rapid than the others. They do not, 
however, become positive until about L = 200 Ä. 
Each one of these Hi curves has a number of very 
distinct features and one can identify them quite 
readily. The real parts of the coefficients are 
relatively featureless. Nevertheless, they become 
totally separable in the region of large L. 

For the reflections with faulting we have plotted 
in Figs. 2 a and 2 b the total Fourier coefficient H'; 
separate plots of HI and HX' are not necessary as 
they do not give any additional information. The 
general characteristics of 101, 102, 103 and 104 are 
very similar. 

4.3. Particle Size amd Microstrain 
It is well established [4] that for hep structures 

the reflections satisfying h—k=3N 
(dA™ldL)L=0 = - 1 ID (4.1) 

where N is an integer. These reflections are 002 and 
004 in the present case. But due to the difficulty 
pointed out in Section III, we are forced to select 
an alternative approach. We return to Eq. (3.15) 
and take the first derivative to obtain 

0/7/ (L) 
dL 

(1 - L/D) exp 

1 

4H 
(eL2 + K + S) (4.2) 

2n* 

~ D e X V 

dhkl 
2 712 

(erf + K + S) L* 

dm 
(6L 2 + K+S)L* 

which in the limit L -> 0 reduces to 
(ÖH r ' (X ) /0L) L = o =- l /D . (4.3) 

Proceeding in the same manner we find from 
Eq. (3.19), for the imaginary part of the coefficient, 
dHi _ In* L 

dm 
2 71* 

0L 

• exp 

• exp 

• exp 

(K + S)(l-LID)(27zeiJdMl) 

271 ßL 

dlki 
2n* 

(K + S) 

dm 
2 71* 

(K + S) 

dhkl 
2ne\JL 
dhkiD 

(1 -LID) 

dl 
(K + S) 

hkl 

This simply gives in the limit L 
(dHi'ldL)L=0 = 27ieLldhkl. 

(4.4) 

(4.5) 



L(A)- 1(A)-
Fig. 1. The plots of real H / and imaginary Hi parts of the Fourier coefficients of Cd thin films (a) Film A ; (b) Film B; (c 
Film C; (d) Film D. 
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L(A)-> 
Fig. 2. The plots of total Fourier coefficients of Cd thin 
(top) and Film D (bottom). 

The amount of anisotropy in ej, for the three 
directions included here is quite significant com-
pared to that in D. We shall, therefore, retain the 
directional dependence of , but take the average 
value D for subsequent discussions. These data are 
displayed in Figure 3. 

From the data we see that microstrains fall very 
rapidly with thickness in the initial stage. They, 
however, reach respective ''saturation values,, 
above about 25,000 Ä. The particle size, on the 
other hand, increases first becoming almost 
saturated at about the same value of thickness. 
These two effects together suggest that source of 
the structural disorder, which in this case is the 
thermally induced one, attains a stable equilibrium 

Cadmium Thin Films 183 

L ( A ) -

films, (a) Film A (top) and Film B (bottom); (b) Film C 

at this thickness. The microstrain decreases by 
about 50%, but the particle size increases only 
about 14% in this thickness range. This fact is the 
result of a two step process. In the first step, part 
of the disorder is released by rearrangement of the 
atoms towards the minimum potential energy 
during deposition of the films; in the second step 
the Cd atoms form some kind of coherently diffract-
ing domains, whereby some atomic planes con-
veniently follow preferred orientation. This latter 
step presumably causes a change in the size of the 
various domain volume. What we have discussed 
above in terms of particle size is actually D = (F)1/3, 
where V is average volume of the domains, and it is 
measured in a direction perpendicular to the 
diffracting plane. 
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Fig. 3. Variation of average particle size J) and micro-
strain eL as function of film thickness. D was not found to 
have any directional dependence as e l -

4.4. Deformation and Growth Faults 

If we were to take Eq. (4.3) for 101, 102, 103 and 
104 reflections it would directly give 

(dHT'(L)lcsL)L=o = {W'{L)\bL)i^ o 
= - 1/De„ (4.6) 

where 
llDen = l l D + l l D F . (4.7) 

In Eq. (4.7) Dp is the fault size that includes the 
deformation fault probability a and growth fault 
probability ß, 

1/-DF = (| JI dhkilc2) (3a + ß) 
for 101 and 103 (4.8 a) 

tx10 3 (Ä)-> 

Fig. 4. Dependence of effective particle size Deff on film 
thickness showing the influence of various crystal direc-
tions. Deft refers to the reflections with faulting. 

or 

1/-DF = (|£| dhki/c2)(3a + 3ß) 
for 102 and 104 . (4.8 b) 

Physically what a and ß represent is this. Since in 
hep structures, 002 planes form close packed layers 
with stacking sequence AB AB AB AB, a growth 
fault indicates a stacking disorder from AB to BC 
resulting in a new sequence ABABCBCB. Alter-
natively, another possibility exists, that is defor-
mation fault, which forms the sequence AB ABC AC A 
instead of the other. The calculated values of D and 
DY are shown in Table 5. As it has been accom-
plished earlier, the particle size D did not seem to 
contain strong directional dependence. We have, 
therefore, conveniently used this result to compute 
DY, and hence a and ß. 

The plots of the fault parameters (3 a + /?) and 
(3a + 3/5) are shown in Figure 5. Once again, a 
strong directional dependence is observed, which is 
as significant as the microstrain calculation. There-
fore, no attempt will be made here to suppress this 
in computing the individual probabilities a and ß, 
which requires two sets of reflections in the same 
crystal direction. These fault parameters, however, 
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Fig. 5. The plots of fault parameters (3 a 
as function of film thickness. 

ß) and ( 3 a + 3/3) 

do indicate that both a and ß diminish rapidly 
with thickness following 

(3a + ß) or (3a + 3ß) = A — Bt — Ct2 (4.9) 

relations, where t is the thickness and the constants 
A ~ 10-3, B ~ 10-8 Ä-i and C= 10~12 Ä-2.Their 
exact values may be determined by actual curve 
fitting procedure. This interpretation is consistent 
with the earlier arguments proposed for micro -
strain and particle size. Apparently, both a and ß 
have the same order of magnitude ~ 10-3 and 
equal degree of effect on faulting. 

4.5. Peak Shifts and Spacing Faults 

One of the important quantities in the x-ray 
line broadening analysis is the peak shift. The 
plots of 2 0 against thickness are found to be linear 
for all reflections over the entire thickness range. 
No noticeable change was observed for 002 and 
004 reflections. The shift for 100 reflection is rather 
small compared to 101, 102, 103 and 104 reflections. 

Theoretical works [26] on hep structures suggest 
that for infinite crystal size, random fault distribu-

tion and extension of faults over the entire domain 
size, the lattice parameter c would be affected 
according to the relation 

c = c0(l + a'd') (4.10) 
where Co is the theoretical value in absence of 
disorder, a' is the layer fault probability and d' is 
a theoretical constant less than unity. A layer fault 
consists [1, 2] of two parts: first a change in inter-
planar spacing called spacing fault, and secondly a 
change in the stacking sequence of atomic planes 
called stacking faults. We have already seen before 
that the stacking faults are described by deforma-
tion and growth faults. The peak shifts A (26) = 
(20)theo — (2ö)obs are shown to be 

A (20o) 
720 I l2d\kl 

71 
(4.11a) 

(tan 0) y'd' for h-k=3N 
and 

A (20°) = 
360 I 

e-K
 

iM 
N

i 

I c2 J 
for 

(4.11b) 

h-k = 3N ±1 • (tan 0) y'd' 

where N is an integer and 
y' = a'(l + a') PH a' for a ' < 1 . (4.12) 

Thus the above equations predict that, for I = 0, 
the shift zl 20 = 0, which should be satisfied by 
100 reflection. Unfortunately, this does not appear 
to be the case. Furthermore, the theory [26] also 
predicts that reflections with h—k=3N should 
be shifted twice as much and in opposite direction 
as the reflections with h — k = 3N±l. In the 
present study the data indicate that all shifts are 
unidirectional and positive, except 004. This 
departure is perhaps the consequence of inadequacy 
or inappropriateness of the spacing fault theory. 
We [1, 2] have arrived at a similar dilemma in our 
earlier study of polycrystalline Mg and Cd. 

The peak shifts are vanishingly small for all 
reflections indicating a small probability for layer 
fault. The lattice spacings are observed to be linear 
function of thickness within the limits of our error 
bar and least square fit of the data. However, the 
unit cell ratio c\a remains constant at 1.8850 com-
pared to its bulk value 1.8858. Witt and Vook [8] 
earlier suggested that peak shifts in thin films of 
hep crystals could arise from thermally induced 
strains. Thus a small peak shift might be inter-
preted as due to small thermally induced strains. 
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5. Summary of the Results and Proposed Models 

In the present investigation of vacuum deposited 
Cd thin films we have obtained several important 
results. First of all, the films of hep metals are 
characterized by strong preferred orientation along 
the 002 planes parallel to the surface of the sub-
strate, and that this preferred orientation is a 
strong function of thickness of the film. In partic-
ular, 100, 002, 004 peaks are many times stronger 
than their corresponding diffraction peaks obtained 
from polycrystalline powder samples. In face 
centered cubic (fee) metals, however, 111 reflection 
shows the highest preferred orientation, and one 
can find what is known as "orientation factor" by 
determining the ratio of the integrated intensities 
between the most affected 111 reflection and the 
least affected 200 reflection. We have demonstrated 
in this work that the preferred orientation and 
geometrical broadening can be removed by decon-
volution method using standard analytic forms of 
these functions. The effect of preferred orientation 
and geometrical broadening is shown to be coupled 
with the root mean square strain term. While a 
complete decoupling of each one of them is experi-
mentally a formidable task, this difficulty never-
theless does pose no serious problem in working with 
Fourier analysis and investigating of other im-
portant effects, such as particle size, microstrain 
and faulting. 

The thin films show a considerable x-ray line 
broadening due to thermally induced strain, which 
seemingly originates from a condition of mismatch 
of the thermal expansion between the glass sub-
strate and Cd films. One way to represent this 
quantitatively would be two write [8] the thermal 
strain as 

= ancCiji((Xi — ag) AT (5.1) 
where rotation matrices which are defined 
by Witt and Vook [8]. Furthermore, af and ag are 
respectively the linear thermal expansion of the 
film and glass, and AT is the difference in tem-
perature, usually it is about 40 ~ 300 °C. We 
assume the average value of the thermal expansion 
coefficient for Cd bulk af = 30 X 10-6/°C and that 
for ordinary glass ag = 9 X 10~6/°C and a probable 
range of temperature A T = 50 °C. Apparently, since 
we are considering the thermal expansion effect 
along the plane of the substrate, an additional 
factor of 4 should be introduced into Eq. (5.1) 

according to Witt and Vook [8]. In this way, we 
can estimate the microstrain in the films to be 

eT ~ 4 X lO"3 . (5.2) 

Indeed, the order of magnitude of ey is quite close 
to the present microstrain calculation. 

To the knowledge of this author, no other 
detailed study on thin films of hep metal is avail-
able. There are a few studies on thin films of some 
fee metals, for example, Cu, Ag, Au and Al. We 
shall first compare our results with those of fee 
metals and then propose interpretation of these 
results. Gangulee [11] has made a comparative 
study between electroplated and evaporated Cu 
film. He found for fee Cu films a decrease of micro-
strain (which was actually the root mean square 
strain in his analysis) with film thickness. Further-
more, Cu films indicated no stacking faults, 
extrinsic- or intrinsic-type, although Cu bulk did 
show appreciable faulting in earlier studies [27, 28]. 
In Cd films we found a definite evidence of stacking 
faults, both a and ß, in contrast to Cd bulk where 
only a has been detected [1]. For Ag, however, 
stacking faults have been detected in films [5] as 
well as in bulk [29, 30]. In this respect, Gangulee's 
interpretation that the strain anisotropy that 
promotes stacking faults in polycrystalline samples 
should collapse into undissociated dislocation loops, 
does not appear to hold. Alternatively, we find that 
the strain anisotropy in Cd film is much stronger 
than in Cd bulk, and consequently suggest that 
increase of anisotropy at the expense of unfavorable 
dislocation loops generates more of stacking faults. 
It should be remarked that for Cd bulk a ~ 3 X 10~3 

and ß ~ 0. 
The lattice parameters in Cd films increase with 

thickness. Light and Wagner [5], and Sen et al. [12] 
found that it decreases in Ag films with thickness. 
Walker [10] observed an increase in Al films with 
thickness. Vook and Witt [8] noted a decrease in 
Au films with thickness. From these results it will 
be sufficient to say that there is no a priori reason 
to believe that the lattice parameter would go 
either way with thickness. What can be said, at 
least, is this, that the behavior of lattice parameter 
is intrinsically related to the strain anisotropy and 
faulting of the films. It has been suggested by 
Walker [10] that in thin films the amount of scatter-
ing of the points representing various reflections 
on either side of the linear plot between lattice 
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parameter and Nelson-Riley function is a strong 
evidence of fault being present in the sample. We 
believe that it is the combination of the various 
weighting factors of the individual fault probabilities 
that should determine the negative or positive 
deviation of the lattice parameter from the bulk 
sample. 

The particle size in Cd films is approximately of 
the same order of magnitude as in Cd bulk; but in 
Cu film the particle size was found [11] to be much 
smaller than that in Cu bulk. We postulate that the 
line broadening in Cd films is due predominantly to 
strain anisotropy and faulting, whereas in Cu films 
it is due primarily to particle size. This inter-
pretation may be further substantiated by the fact 
that particle size in Cd films changes only by 14% 
against a substantial change of 50% of the micro-
strain for the thickness range incorporated in this 
study. 

As mentioned above, for fee metals the ratio 

E = (Intensity)m/(Intensity)2oo ( 5 . 3 ) 

has been used [11] as preferred orientation param-
eter, which decreased with film thickness for 
Cu films. Alternatively what we have proposed is a 
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